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Gravity-capillary standing waves in water of arbitrary uniform depth are considered. 
The classical perturbation calculation yields unbounded coefficients for some critical 
values of the depth. I n  the present paper solutions valid near the first critical value 
of the depth are derived. A problem of non-uniqueness is discovered and discussed. 
It is shown that two solutions exist, one with higher frequency and one with lower 
frequency than the zeroth-order solution. They are found analytically a t  the critical 
value of the depth and numerically in an interval around it. Graphs of the results 
are included. 

1. Introduction 
The problem of gravity standing waves in water of arbitrary uniform depth was 

solved to third order by Tadjbakhsh & Keller (1960). Their method was applied by 
Concus (1962) to solve the more general problem that includes capillary as well as 
gravitational forces. 

These perturbation expansions were obtained by imposing a uniqueness condition 
which excludes certain fluid depths. Concus (1964) showed that the values of the depth 
excluded by this condition form a denumerably infinite set which is densely 
distributed over the entire positive real line. This difficulty raises theoretical 
questions about the validity of these expansions and about the mathematical 
existence of standing waves. These questions will not be answered in the present 
paper. However, we consider the solution obtained by Tadjbakhsh & Keller (1960) 
as a satisfactory third-order perturbation solution because i t  is defined for any value 
of the depth including those excluded by the uniqueness condition. These results are 
confirmed by the numerical calculations of Vanden-Broeck & Schwartz (1981). 

The use of the uniqueness condition in the general problem with surface tension 
results in unbounded series coefficients for certain values of the deptjh (Concus 1962). 
Although these values of the depth were excluded by the uniqueness condition, the 
perturbation solution is clearly not satisfactory for values of the depth close to these 
critical values. 

In  the present paper we construct a perturbation solution valid a t  the first critical 
value of the depth. We show that two different solutions can exist a t  this critical value. 
These solutions are similar to the ' Wilton ripples ' of the theory of gravity-capillary 
progressive waves (Wilton 1915; Pierson & Fife 1961 ; Schwartz & Vanden-Broeck 
1979; Chen & Saffman 1979). 

I n  addition we use the numerical scheme derived by Vanden-Broeck & Schwartz 
(1981) to compute the so1ut)ion in the neighbourhood of the first critical value of the 
depth. We show that the two solutions obtained a t  the critical value are members 
of two different families of solutions. 
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We formulate the problem in $2. The main results obtained by Concus (1962) are 
summarized in $3. The perturbation solution valid at the first critical value is derived 
in $4. The numerical results are presented in $5. 

2. Formulation 
We consider the time-periodic two-dimensional potential flow of a fluid bounded 

below by a horizontal bottom and above by a free surface. We assume the motion 
to be periodic in the horizontal direction with wavelength A. We measure lengths in 
units of k-' = A/27t. 

Following Concus (1962), we define the parameters y and S by the relations 

a k 2  

PS 
y = - ,  

Here is the surface tension. For 6 < 1 the capillary effects are small, whereas for 
1-8 < 1 they predominate. 

We define Cartesian coordinates such that the motion is symmetric about the 
vertical plane x = 0 and such that y = 0 corresponds to the mean level. Let k-lh 
denote the mean depth, [kg( 1 + y)]i w the angular frequency, [kg( 1 + y)]-i w-lt  the time 
and a the amplitude of the linearized surface-wave motion. Then we define E = ak 
and let ek- lq(x ,  t )  denote the elevation of the free surface above the mean level and 
s[g( 1 + y)] i  k-%$ the velocity potential. 

In  dimensionless variables the motion of the fluid is described by the equations 
(see Concus 1962) 

A$ = 0 in 0 < x < x, -h c y < sq(x,t), (2.3) 

( l - S ) q - S ' ~ ~ ~ [ l  + E " ~ ] - " + $ ~ + ~ E ( $ ~ + ~ ~ )  = 0 on y = eq(x,t), (2.4) 

q s = O  on x = O ,  x = x ,  (2.7) 

1,E Jr $(x, y, t) sin t cos x dt dx dy = 0, 

lh 1 Jr $(x, y, t )  cost cosx dt dx dy = ?j7t2 (tanh h)i. (2.11) 

As noted by Tadjbakhsh & Keller (1960) and Concus (1962), a unique solution does 
not exist for those values of h for which the frequency of the nth spatial harmonic 
{n[ 1 + S(n2 - 1 ) tanh nh}i is an integral multiple of the fundamental frequency 
(tanh h)i : this yields the uniqueness condition 

n[ 1 + S(n2 - l)] tanh nh 
tanh h +j2 ( n = 2 , 3  ,... ; j = 1 , 2  ,... ). (2.12) 
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3. Perturbation solution satisfying the uniqueness condition (2.12) 

expansion in powers of 8. Thus 
Following Tadjbakhsh & Keller (1960), Concus (1962) sought a solution as an 

(3.1) 

€4 = E $ O ( X , Y , ~ ) + € ~ $ ~ ( X . , Y , ~ ) + ~ ~ $ ~ ( X , Y , ~ ) + O ( E ~ ) ,  (3.2) 

= w o + E W 1 + ~ ~ W 2 + ~ ( E 3 ) .  (3.3) 

vo = sint cosx, (3.4) 

cv = Ev~(x, t)  + + y X ,  t)  +4e3v2(x, t) + 0(€4), 

The solution of the zeroth-order solution is given by 

cos t cos x cosh (y + h) ,  w0 

$ O = m  
(3.5) 

wi = tanh h. (3.6) 

This solution is made unique by imposing the condition (2.12). 
Concus (1962) derived the following expressions for the first-and second-order 

solutions : 
cos 2t cos 2x, 1 (3.7) 

3[0, - 2 6 ~ 0 ~  - (1 + 26) wo '1 
16( 1 - 3 6 ~ 0 ~ )  cash 2h 

- sin 2t cos 2x cosh (2y + h), (3.8) 

w ,  = 0, (3.9) 

7' = b,, sin t cos x + b,, sin 2t cos 3x + b,, sin 3t cos x + b,, sin 3t cos 32, 

$' = p2 + p13 cos t cos 32 cosh 3(y + h) 

(3.10) 

+p3, cos 3t cos x cosh (y + h) +p3, cos 3t cos 32 cosh 3(y + h), (3.1 1) 

1 - 2 4 -  3( 1 + 9S2) w0- 3(4 + 66- 9a2- 276,) w o 3  + 9( 1 + 56+ 46') 00' 
w2 = - > (3.12) 32 (1 + 36) (1 - 3 8 ~ ; ~ )  

where Po is an arbitrary constant. The constants bij and Pi j  are defined by the relations 
(35) and (36) given by Concus (1962). 

For 6 = 0 the solution (3.4)-(3.12) reduces to the solution given by Tadjbakhsh 
& Keller (1960). It can easily be checked that all the terms are bounded for any value 
of h if 6 = 0. Thus Tadjbakhsh & Keller's solution is a satisfactory third-order 
solution for any value of h. 

For 6 =I= 0 some of the terms appearing in w2, v' and b,, are unbounded a t  the critical 
values of depth defined by the relations 

(3.13) 

1-6(1+3w,4) = 0. (3.14) 

In  $4 we derive a perturbation solution valid a t  the first critical value of the depth, 

1 - 360,~ = 0, 

These critical values correspond respectively to n = j = 2 and n = j = 3 in (2.12). 

i.e. a t  the value of the depth defined by (3.13). 
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4. Perturbation solution at the first critical value of the depth 
We seek a perturbation solution of the form (3.1)-(3.3) valid when (3.13) is satisfied. 

We substitute the expansion (3.1)-(3.3) into the system of equations (2.3)-(2.11) and 
collect all terms of like powers of 6. The terms with 6 to the first power in (2.4) and 

(4.1) 
(2.5) are given by 

#",wor:=O on y=0. (4.2) 

( l - S ) q o - 6 q ; z + w o # ~  = 0 on y = 0, 

Equations (2.3) and (2.6)-(2.11) remain unchanged in form as equations for qo, # O  

and w,. 
The terms of order e2 in (2.4), ( 2 . 5 )  and (2.11) are given by 

( l -S)ql-Syiz+oo#t  = F, on y = 0, (4.3) 
# ; - w o r t  = Go on y = 0, 

jr, j: #' cost cos x dt dx dy = 0. 

Here FO and Go are defined by 

FJ = -i[($W2+ (#;)21--0r0#&-wl#:> (4.6) 

(4.7) Go = 11; 4; - ~ ' 4 ; ~  + W I T : .  

Equations (2.3) and (2.6)-(2.10) remain of the same form as equations in q l , # l  
and wl. 

The solution of the zeroth-order problem defined by (2.3), (4.1), (4.2), (2.6)-(2.11) 

(4.8) 
and (3.13) is 

qo = sin t cos x + A cos 2t cos 22, 

sin 2t cos 22 cosh 2(y + h) ,  4' = ~ c o s t c o ~ x c o s h ( y + h ) -  w0 ~ Aw0 
sinh h sinh 2h (4.9) 

w i  = tanh h. (4.10) 

Here A is an arbitrary constant. Thus the solution of the zeroth-order solution is not 
unique when (3.13) is satisfied. 

Differentiating (4.3) with respect to t and substituting rt from (4.4) and y i z t  from 
(4.4), after differentiating twice with respect to x, we obtain 

-6#~zx+(1-S)#~+w~#t = H ,  on y = 0. (4.11) 

Here Ho is defined by 
Ho = w0 4 + (1 - 6) Go - SG;,. (4.12) 

Separation of variables yields for the solution of (2.3) subject to (2.6) 
m 

@(x, y, t )  = E A,(t) cos nx cosh n(y + h).  (4.13) 
n - 0  

Substituting (4.13) into (4.11), we obtain 

w i  coshnh Ai(t)  + [(l-6) n+6n3] sinhnh A,(t) = H ,  cosnxdx. (4.14) 

Here ,LA = 1 for n > 0 and ,u = 2 for n = 0. Using (4.6)-(4.10), we can rewrite (4.14) 
in the form 

w i  A,"(t) = 33w:+w;l)sin2t-2A2(w;coth22h+3w:)sin4t, (4.15) 
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w i  cosh h Ai(t) + sinh h A, = [2w1 ++A(w;l- 3 4  + 40, coth 2h)l cost 

++A[4w0 coth 2h+ w ; l +  2141 cos 3t, (4.16) 

w i  cosh 2h Ag(t) + 2( 1 + 36) sinh 2h A,(t) 

= {a[w:-(l +2~)w;1]-2Aw,-6Aw,6-4Aw,w~coth2h}sin2t, (4.17) 

oi cosh 3h A:(t) + (3 + 56) sinh 3h A3(t) 

= tAo,cost [(4+486) coth2h-(3+246)o,2-3wi] 

-+Aw,-, cos 3t [( 12 + 486) ~ 0 t h  2h + (3 + 246) W, - 2141, (4.18) 

w i  cosh 4h A:(t) + (4 + 606) sinh 4h A4(t) 

= A2w,sin4t [(2+306) coth2h+2w,coth22h-6w~], (4.19) 

oicoshnhAi(t)+[(1-6)n+6n3]sinhnhA,(t) = 0 (n = 5,6,  ...). (4.20) 

From (2.9) and (4.13) i t  follows that A ,  must be periodic in t with period 27t for 
n 3 1 and from (3.13) and (4.20) that A, = 0 for n 2 5. The periodicity of A ,  requires 
the coefficient of cos t in (4.16) to be equal to zero. Thus 

w1 = i A ( 3 ~ :  -0,' - 4 ~ ,  ~ 0 t h  2h). (4.21) 

If we set A = 0 in (4.15)-(4.21) we recover the system of equations derived by 
Concus (1962) for the first-order solution. I n  particular the solution of (4.17) is then 
given by 

3[w, - 26wt3 - (1 + 26) wO'] sin 2t. A,  = - 
16(1-360;~) cash 2h 

(4.22) 

This solution is unbounded since (3.13) is assumed to be satisfied. Therefore we do 
not set A = 0 in (4.15)-(4.21). 

We shall determine the constant A in such a way that the solution of (4.17) is 
bounded. The appropriate compatibility condition is obtained by multiplying (4.17) 
by sin 2t, integrating with respect to t from 0 to 27t, applying integration by parts 
twice to the term containing Ag(t), and using (3.13). Thus we find that the coefficient 
of sin 2t in the right-hand side of (4.17) must be equal to zero. This yields the relation 

3[~:- (1 +26) wol] 
Ao - 

-8+246+ 16oicoth2h' 
(4.23) 

Substituting (4.21) into (4.23), we obtain 

(4.24) 
3 [ ~ : - ( 1 + 2 6 ) ~ , ~ ]  

[ 1 - 36 + 2 4  coth 2h] [ 3 4  - 0,' - 4 ~ ,  coth 2h] 
A = f  

The remaining part of the calculation follows closely the work of Tadjbakhsh & 
Keller (1960) and Concus (1962). Integrating (4.15)-(4.19), we obtain 

A, = - ~ ( 3 ~ ~ + ~ ~ ~ ) s i n 2 t + ~ A ~ ( ~ , ~ 0 t h ~ 2 h + 3 w ~ ) s i n 4 t + a , t + ~ , ,  (4.25) 

- A[4~,coth2h+w,~+2lw:] 
A, = cos 3t, 

32 sinh h 
(4.26) 

A, = a, sin 2t, (4.27) 
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A0,~0~t[(4+488)coth2h-(3+248)0,~-30~] 
A,  = 

(12 + 208) sinh 3h - O: cosh 3h 

> (4.28) 
A0,~0~3t[ (12+48S)  coth2h+ (3+248)0,~-210:] - 

( 12 + 208) sinh 3h - 360: cosh 3h 

A2w, sin 4t[(2 + 30s) coth 2h + 20, coth2 2h - SO:] 
(4+608)sinh4h- 16w:cosh4h 

A,  = 

Here a,, Po and a, are constants to be determined. 
Substituting (4.13) into (4.3), we obtain 

4 

( l -S)y l -Sy~,  = F,-w, X Aa(t)cosnx:coshnh, 
n - 0  

(4.29) 

(4.30) 

where F, and An( t )  are defined by (4.6) and (4.25)-(4.29). The function yl is therefore 
defined as the solution of (4.30) subject to (2.7). 

The constant a, in (4.25) is evaluated by integrating (4.30) with respect to x 
between 0 and n: and using (2.7) and (2.8). Thus we find 

a, = Q W ~ - & L J ~ ~ + ~ A ~ W ~ ( ~  -<?oth22h). (4.31) 

This completes the determination of the first-order solution. It still contains an  
arbitrary constant a,. This constant would be determined a t  second order in a way 
similar to the way that A was determined a t  first order. However, we shall not do 
this in this paper. 

Equation (4.24) implies the existence of two solutions when (3.13) is satisfied. 
Relations (3.3) and (4.21) show that one solution is characterized by a frequency larger 
than the zeroth-order frequency, and the other solution by a frequency smaller. The 
wave profiles given by these two possibilities are illustrated in figure 1 .  These solutions 
are very similar to the ‘ Wilton ripples ’ of the theory of gravity-capillary progressive 
waves (Wilton 1915; Pierson & Fife 1961 ; Vanden-Broeck & Schwartz 1979; Chen 
& Saffman 1979). 

In  95 we show that these two solutions are members of two different families of 
solution. 

5. Numerical results 
Concus’ (1962) solution is satisfactory for values of the depth far enough away from 

the critical values (3.13) and (3.14). The solutions derived in $ 4  are correct a t  the 
critical value (3.13). Perturbation solutions valid for values of the depth near but not 
equal to the critical value (3.13) could be obtained by using the PLK method. An 
example of such a perturbation calculation can be found in Pierson & Fife (1961). 

In  the present work, we compute numerical solutions uniformly valid near the first 
critical value of the depth. 

Vanden-Broeck & Schwartz (1981) derived a numerical scheme to compute pure 
gravity standing waves. Their numerical procedure is generalized to include the effect 
of surface tension by replacing their equation (2) by (2.4). The numerical procedure 
then follows closely the method outlined in $111 of their paper. 

Numerical values of w as a function of 3Swt4 for E = 0.005 and h = 3 are shown 
in figure 2. These values were obtained with N = 4 in the equations (15) and (16) given 
by Vanden-Broeck & Schwartz (1981). No rigorous error bounds were calculated. 
However, the accuracy of the numerical results was estimated by increasing the value 
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I -0.005 

FIGURE 1 .  Profiles of the surface of the standing wave a t  t = irr. These curves are based on (4.8) 
with E = 0.005 and h = 3. The solid curve corresponds to  A > 0 and the broken curves to  A < 0. 
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FIGURE 2. Values of w as a function of 3Swc4 for E = 0.005 and h = 3. The solid curves correspond 
to  the numerical computation, the broken curve to  Concus’ perturbation solution, and the two 
crosses to  the solutions calculated in 54. 

of N .  The numerical values computed with N > 4 were found to be indistinguishable 
within graphical accuracy from those of figure 2 (for a detailed discussion of the 
convergence of the scheme as N is increased, see Vanden-Broeck & Schwartz 1981. 
Concus’ perturbation solution for o is represented by the broken line in figure 2. It 
is defined by (3.3), (3.6), (3.9) and (3.12). This solution is unbounded when 3 S w t 4  = 1 .  
The two crosses in figure 2 correspond to the perturbation solution of $4.  They 
are defined by (3.3), (3.6), (4.23) and (4.24). These two solutions are in fair agreement 
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with the numerical values. This constitutes a check on the validity of the numerical 
scheme. 

The numerical results of figure 2 and similar results obtained for different values 
of the depth indicate that the solutions derived in $4 are members of two different 
families of solutions. One family of solutions agrees with Concus’ perturbation 
solution for 3 6 ~ ; ~  < 1 and the other family agrees with Concus’ perturbation 
solution for 3 6 ~ ; ~  > 1. Similar properties were found by Schwartz & Vanden-Broeck 
(1979) for gravity-capillary progressive waves in the neighbourhood of the first 
critical value of the capillary number. 

Finally let us mention that Chen & Saffman (1979) have shown that the Wilton 
ripple phenomena is associated with a bifurcation in which a wave of permanent form 
can double its period. Similar results for standing waves would be obtained by 
defining the amplitude u as the coefficient of cos2xcos2t in the expansion of the 
surface-wave elevation. 
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Foundation under Grant MCS-8001960 and MCS-8215064. 
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